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bstract

This paper proposes a methodology and approach to understand battery performance and life through driving cycle and duty cycle analyses
rom electric and hybrid vehicle (EHV) operation in real-world situations. Conducting driving cycle analysis with trip data collected from EHV
peration in real life is very difficult and challenging. In fact, no comprehensive approach has been accepted to date, except those using standard
riving cycles on a dynamometer or a track. Similarly, analyzing duty cycle performance of a battery under real-life operation faces the same
hallenge. A successful driving cycle analysis, however, can significantly enhance our understanding of EHV performance in real-life driving.
ikewise, we also expect similar results through duty cycle analysis for batteries. Since 1995, we have been developing tools to analyze EHV and
ower source performance. In particular, we were able to collect data from a fleet of 15 Hyundai Santa Fe electric sports utility vehicles (e-SUVs)
perated on Oahu, Hawaii; from July 2001 to June 2003 to allow driving and duty cycle analyses in order to understand battery pack performance
rom a variety of EHV operating conditions. We thus developed a comprehensive approach that comprises fuzzy logic pattern recognition (FL-PR)
echniques to perform driving and duty cycle analyses. This approach has been successfully applied to EHV performance analysis via the creation

f a compositional driving profile called “driving cycle profile” (DrCP) for each trip. The same approach was used to analyze battery performance
ia the construction of “duty cycle profile” (DuCP) to express battery usage under various operating conditions. The combination of the two
nalyses enables us to understand both the usage profile of EHV and battery performance in synergetic details and in a systematic manner using a
attern recognition technique.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Conducting driving cycle analysis using trip data col-
ected from vehicles dispatched in real-life operation is very
hallenging; e.g., [1–18]. Although numerous attempts have
een made in the past, no consistent approach has been
ccepted to allow a systematic, detailed characterization of driv-
ng cycles for engineering analysis and comparison, except
hose standard driving schedules conducted on dynamome-
ers or well-documented tracks, mimicking real-life situations,

o permit vehicle performance analyses or other urban and
mission studies [3–5,7–9,14–20]. Besides standard driving
chedules, sometimes regional driving cycles have to be devel-
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ped [8,14–18] to emulate real-world conditions in certain
egions to enable adequate analyses. Even so, these traditional
pproaches are still unable to handle extremes that are beyond
est capabilities. Therefore, these conventional assessments offer
imited success.

For traction power sources such as batteries in electric and
ybrid vehicle (EHV) applications, assessments on their perfor-
ance are, most of the time, conducted in laboratories. Similar

o standard driving schedule tests and analyses, these laboratory
ests and duty cycle analyses have constraints in their validity to
eal-life operation. A main issue exists in both cases due to the
roblem with real-life operation where, even under specific driv-
ng cycles or duty cycles, energy consumption strongly depends

n ambient operating conditions that are typically uncontrolled.
hus, a systematic, comprehensive analysis of both driving
ycles (for vehicle) and duty cycles (for power sources) in real-
ife operation is highly desirable.

mailto:bliaw@hawaii.edu
dx.doi.org/10.1016/j.jpowsour.2007.06.010
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In the literature, depending on the context of discussions by
ifferent authors, driving cycle, duty cycle, and driving pattern
ay present different meanings. It is therefore essential to define

he terminology used by this paper to ensure clarity. A “driving
ycle” in this paper refers to a history of driving, typically rep-
esented by a speed versus time curve. A “duty cycle” refers to a
istory of power usage of a device, typically depicted by a power
ersus time curve. A “driving pattern” is used to describe a driv-
ng condition, taking into account both road condition (e.g., road
ype) and driving behavior.

The lack of comprehensive driving and duty cycle ana-
ytical tools to allow benchmarking both vehicle and battery
erformance might have undermined the development and com-
ercialization of battery-powered electric vehicles (BEVs) in

he 1990s. Significant technology barriers, such as limited
riving range and the lack of battery charging infrastructure,
revented widespread use of BEVs during that period. On the
ther hand, the lack of adequate tools to afford a rapid integra-
ion of powertrain components and a quantitative benchmark
f technology advancements could have hampered BEV’s mar-
et penetration. These barriers persist to date. Although the
n-going success in commercializing hybrid electric vehicles
HEVs) and the introduction of plug-in hybrids by Toyota and
handful other automakers raise some hope to transform our

uture automobile and transportation industry to a more efficient
nd environmentally-friendly operation, a better assessment can
nly accelerate this process.

Consistent driving and duty cycle analyses are very desirable
o allow us correlate between battery performance and EHV
sage in real-world situations. The approach that we used in this
ork relies on a suite of fuzzy logic pattern recognition (FL-
R) techniques that tend to be comprehensive and quantitative to
llow (vehicle) driving and (powertrain/battery) duty cycle anal-
ses. In this paper, we explain how the FL-PR technique works to
llow driving and duty cycle analyses using trip data collected
rom a fleet of 15 Hyundai Santa Fe battery-powered electric
ports utility vehicles (e-SUVs) in real-world driving conditions.
his approach should be quite useful, for instance, for future
lug-in hybrids in assessing vehicle and battery performance.

. Data collection
The fleet of 15 Santa Fe e-SUVs was delivered by Hyundai
otor Company (HMC) of South Korea to Hawaii in July 2001.

ig. 1 shows pictures of one of the Santa Fe e-SUVs and on-
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Fig. 1. Hyundai’s Santa Fe e-SUV and
wer Sources 174 (2007) 76–88 77

oard data acquisition device. The vehicles are designed to
e purely battery-powered for roadworthy tests. Each vehicle
omes with a 60 kW AC inductive motor and power controller
ith a Panasonic 95 Ah nickel metal hydride EV battery pack

315 V nominal). These vehicles can accept AC charging directly
rom electrical wall outlets or fast DC charging with a 60 kW
osiChargeTM made by AeroVironment (Monrovia, CA). Trip
nd charging data are recorded by automated on-board data
cquisition system in a flash memory card during vehicle oper-
tions or charging periods. All trip and charging data were
ime-stamped. The data includes information from motor con-
roller, auxiliary power unit (APU), and battery management
ystem on a second-by-second basis, including pack voltage,
urrent, power, motor RPM and many other critical parameters
hat can afford driving and duty cycle analyses. The database
omprised data from more than 255,000 km in 25,000 trips.
he data were transferred periodically to a separate collecting
edium, filtered, validated, and then recorded into a database

or analysis.
The vehicles were dispatched to four primary organiza-

ions on Oahu, Hawaii, for a variety of use from July 2001 to
une 2003. The vehicles dispatched to Hickam Air Force Base
HAFB) were typically used for security patrol and errands.
awaiian Electric Company (HECO) and City and County of
onolulu (C&C) used the vehicles for commutes and perform-

ng service duties. The vehicles retained at the Hawaii Electric
ehicle Demonstration Project (HEVDP) office, now Hawaii
enter for Advanced Transportation Technologies (HCATT),
ere used for commutes and errands. It is worth noting that
rivers at HAFB have to observe strict speed limits (mostly at
5 mph or 40 km h−1), therefore the driving cycles from these
ehicles are often different from those of the other locations.

. Technical approach: analyses, results, and discussion

.1. Driving cycle analysis

Fuzzy logic pattern recognition is a relatively well-accepted
echnique for many technology applications, e.g., [21–26]; due
o its merit often associated with the need for linguistic, qualita-
ive expression and knowledge in handling non-fuzzy numerical

ata. This ability is of particular interest to us in dealing with
riving cycle analysis, arising from the qualitative nature and
eed for linguistic expression of driving cycles in such an
nalysis. Interestingly, few have reported using fuzzy logic or

on-board data acquisition system.



78 B.Y. Liaw, M. Dubarry / Journal of Power Sources 174 (2007) 76–88

F
s

o
s
R
a
c

c
b
v
e
a
p
t

e
t
w
t
p

F
i

f
t
a
o
e
u
T
i
short travel distance, it implies that driving occurs most likely in
ig. 2. Schematic of a driving cycle (speed vs. time curve) broken down into a
eries of sequential isolated “driving pulses” (DP).

ther pattern recognition techniques for driving cycle analysis,
tate-of-charge estimation or power control systems [27–32].
ecently, we began to consider using such a FL-PR technique
nd the MATLAB® fuzzy logic toolbox for driving and duty
ycle analyses [33–35].

Our FL-PR approach is built upon a “driving pulse” (DP)
oncept (Fig. 2). A “DP” is defined as an active driving period
etween two contiguous stops in a trip. We used two conjugate
ariables, “average speed” and “distance” traveled, to describe
ach DP. Each trip can then be expressed by a series of DPs. By
ssociating to each DP a specific driving event, a “driving cycle
rofile” (DrCP) representative of the driving condition evolution
hroughout the trip can be constructed.

A critical step in constructing the DrCP is to classify a driving
vent for each DP. This is achieved by interpreting the distribu-
ion of DPs on an “average speed versus distance” (V–d) plot

ith all trip data collected in the fleet operation. Fig. 3 presents

he distribution of DPs derived from the database. This (V–d)
lot is used as the basis to develop fuzzy logic membership

a
i
w

Fig. 4. Fuzzy logic inference system used
ig. 3. An average speed vs. distance (V–d) distribution plot (resolution: 25 × 25
n full scale).

unctions and fuzzy rules to establish a driving event classifica-
ion scheme using the conjugate variables, i.e., average speed
nd distance. Fig. 4 depicts this process and the classification
f the driving events to construct DrCP. Five specific driving
vent categories are used in the classification: stop-n-go (SnG),
rban (U), suburban (SU), rural (R), and highway (H) driving.
his classification scheme is quite comprehensive and intuitive

n nature. For instance, when a DP has a low average speed and
busy street, which we call a “SnG” driving event. Vice versa,
f a DP exhibits a high average speed and travels a long distance,
e most likely will consider that the driving is taking place on

to classify driving events for DPs.
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plots of both trips, upon normalization with respect to trip dura-
tion and distance, the two driving cycles exhibit a high degree
of similarity in driving event composition, although their dura-
Fig. 5. (A) Driving events classification scheme (B)

highway, thus we call this type of driving a “highway” driving
vent. Using this FL-PR technique, we were able to construct
rCP for each trip in a systematic manner. The fuzzy sets and

ules permit certain degree of association for a driving event
embership overlapped with the adjacent ones. This capability

s different from the traditional numerical analyses in which the
lassification is more strict and discrete. The fuzzy algorithm
llows the expression be handled in a numerical, quantitative
anner by a fuzzy classification number (FCN), which is a scale

arbitrarily chosen to be 0–10) to reflect the outcome of the fuzzy
ets calculated from the membership functions.

To validate if the fuzzy sets and rules offer proper classifi-
ation of driving events, we carried out validation by using an
nitial set of fuzzy rules to analyze a limited set of trip files. The
alidation was determined by human intercession DP-by-DP and
rip-by-trip. If a DP classification was not interpreted properly
y the fuzzy rules, the membership functions were modified,
nd the same intercession repeated again until all interpreta-
ions were satisfactory to the intercessor’s opinion. Although this
nterpretation and validation are subjective, yet systematic, we
elieve that the error margin introduced by the human interpreta-
ion will not substantially change the outcome of the discussion.

hen the rules can interpret driving cycles properly, we then
ncrease the number of trips to examine the accuracy of the
ules in making proper driving event classification. Refinement
f the rules continues until a proper interpretation of driving
ycles among all trips in the database is achieved. Through this
teration and refinement process, a final set of fuzzy rules was
reated. The interpretation of driving cycles with this mature set
f fuzzy rules is shown in Fig. 5(A) where a surface map dis-
lays the projection of driving events based on the interpretation
f average speed and distance membership functions illustrated
n Fig. 4. The surface map shows the interpretation of the five
riving events by the FL-PR technique in terms of average speed
nd distance. Fig. 5(B) shows the distribution of DPs in terms
f FCN. This plot is useful to study the constitution of DPs as
nterpreted by the FL-PR technique, primarily to look into any
otential bias that could be introduced by the fuzzy sets. It is

easonable to expect that the distribution of DPs will follow a
elatively inverse relationship with FCN, since most of the DPs
sually come from a higher frequency of occurrence in the SnG
riving in Honolulu, whereas rural and highway driving is less F
ibution of DPs as a function of fuzzy classification.

ncountered. This is a regional driving cycle characteristic for
onolulu.
From this FL-PR technique and associated DrCP, a driving

ycle analysis can be conducted. Fig. 6 illustrates an example
sing a selected trip, which has a driving cycle with very mixed
riving conditions, from SnG to H. It is difficult to analyze
his trip with any of the traditional approaches, which usually
ttempts to classify a trip with an “overall” driving cycle in
ts entirety. The FL-PR technique, in contrast, using DPs, each
ith a specific driving event in a compositional DrCP, provides
much more comprehensive expression to allow driving cycle

nalysis.
It is important to point out that the DrCP can be normal-

zed in percentage of time and distance traveled in a trip. This
ormalization avoids the incompatibility issue arisen from dif-
erent durations and distances depicted in various trips, therefore
t provides a common basis to allow different trips to be com-
ared on a normalized fashion. The ability to compare different
riving cycles side-by-side indeed offers a tremendous merit and
tility for vehicle performance analysis (VPA) in real-life oper-
tion. Fig. 7 is a good example to illustrate this aspect. Fig. 7(b)
epresents a driving cycle adopted by the US Environmental Pro-
ection Agency (EPA) in the Federal Test Procedure (FTP) [36]
s US06 Supplemental FTP Driving Schedule (SFTPDS), which
s an aggressive driving schedule with high acceleration. In A
ig. 6. An example of driving cycle profile (DrCP) using the FL-PR technique.
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The unique driving event distribution in the driving cycle at the
HAFB operation is quite visible, especially the much less con-
tribution from highway driving. On the other hand, both C&C
and HECO operations have much more commutes that reflect

Fig. 8. A monthly DrCP summary report on operation and usage of a BEV.
Fig. 7. (a) Trip ID# 3183l524 analyzed by the FL-PR technique and (b

ion and distance are quite different (2361 s versus 600 s, and
4 km versus 13 km, respectively). In B plots, we show the driv-
ng cycle analysis using the FL-PR technique. The chronicle
equence of the driving events as shown in the DrCP is differ-
nt. However, the summary diagrams as shown in C plots, which
xhibit the progression of driving events in time and distance, are
ery similar. The representations shown in A–C plots in the driv-
ng cycle analysis using this FL-PR technique are therefore very
seful in depicting the similarities and differences among trips,
ven though they could be different in duration and/or distance
hat were traditionally difficult to be analyzed and compared. It
herefore suffices to say that our analysis provides the following
ifurcate aspects:

Similar to conventional analyses, descriptive statistical infor-
mation can be derived via the analysis; thus, trip (ID#
3183l524) was about four times longer than US06 SFTPDS
and was 34 km with an average speed of 62.0 km per hour
(km h−1), in contrast to 12.9 km and 83.4 km h−1 in US06
SFTPDS;
We can further yield quantitative summaries detailing the trip
as a 73.4% H and 26.5% combined U/SU cycle, in contrast to
the US06 SFTPDS with 77.8% H and 22.2% U/SnG driving.

Another useful derivative of the FL-PR technique and the
rCP presentation is that we can afford to examine a vehicle
f its performance from a fraction of a trip to the entire service
ifetime, on a consistent, normalized basis. This is accomplished
y summarizing trip records to compose a summary for a vehi-
le and to generate daily, weekly, monthly, quarterly, or even
ifetime report regarding the vehicle operation with a consistent
lassification of driving cycles in a systematic manner, as shown
n Fig. 8. This summary could be a powerful tool for additional

nalyses. For example, it can be used for fleet management to
ssess vehicle usage and operation efficiency of the fleet. It can
ssess traffic conditions if trips on the same route but at differ-
nt times can be collected and analyzed. It can be used even

F
d

6 Supplemental FTP Driving Schedule [36] using the same technique.

or market study if a large fleet and users are involved, so one
an study driving habits, vehicle usage, and other aspects statis-
ically. An overall summary of the breakdown of contributions
rom the driving events at different locations is shown in Fig. 9.
ig. 9. A breakdown of driving event distribution as a function of location and
riving event.
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Table 1
Comparison of the usage of vehicle at different locations

Organization HAFB HECO C&C

Month 1 2 3 1 2 3 1 2 3
No. of trips > 0.03 km 65 96 89 112 107 73 154 93 153
D 701
% 18.8
% 78.8
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bership functions used in the FL-PR technique were subjective,
the application of MEF in VPA is still viable. We shall use
the following analysis to continue to present some interesting
examples.
istance driven (km) 196 243 318 1
Local (SnG/U/SU) 69.5 80.6 74.8
R/H 27.0 14.9 21.4

ore highway contributions in their respective driving event
istribution.

The driving cycle analysis with the FL-PR technique pro-
ides us additional capabilities to study impacts on vehicle and
attery performance directly from driving events and vehicle
peration at different locations. As an example, in Table 1, we
ummarize the usage of three vehicles at three different loca-
ions for 3 months for comparison. For simplicity, the analysis
ncludes contributions from driving events in two major cate-
ories: local (i.e., combined SnG/U/SU) and R/H. Among the
hree locations, we began to inspect the unique HAFB opera-
ion first. In general, the fluctuations in the number of trips vary
oticeably among the three locations, and there is no consis-
ent pattern associated with these fluctuations. HAFB operation
owever consistently has lower mileage, compared with those
f the other two. It suggests that the trips made by HAFB are
enerally much shorter in distance than those by the other two.
his observation is consistent with the driving event distribution
hown in the next two rows in the table, where HAFB trips are
ostly composed of local driving approximately 70–80% versus

2–28% in the C&C and HECO trips.

.2. Vehicle performance analysis (VPA)

One of the major objectives in conducting driving cycle
nalysis is to assess vehicle performance. A useful exercise in
ehicle performance analysis (VPA) can be achieved by study-
ng “effective force” (EF) for propulsion as a probe to evaluate
he effectiveness in energy utilization in vehicle operation. EF
s expressed in kWh km−1. We can use EF for VPA through the
ollowing process.

Fig. 10 shows the distribution of EF versus driving events
as represented by FCN) of all the DPs in the database. The
ispersion of EF in the plot indicates that, as the driving events
et closer to local driving (i.e., lower FCN); the distribution
f EF becomes more spread out. This is conceivable, as the
riving conditions such as traffic or road conditions begin to
how increasing impacts on the effectiveness of energy use as
xpressed by EF at lower FCN. From this plot, a mean EF (MEF)
an be calculated by averaging all EF values within an interval of
.25 in FCN. The resulting MEF curve is shown by the solid line.
he MEF is assumed neutral (non-biased) to any driving con-
itions, including traffic, weather, aerodynamics, driving habit,

oad conditions (such as grading), if a sufficiently large set of
ata was used in the calculation. However, Fig. 10 shows that
rom highway (H, 8 < FCN < 10) to rural (R, 6 < FCN < 8), the

EF remains constant, although the EF distribution becomes
F
w

1238 935 1372 905 1445
24.8 12.5 26.5 28.1 25.2
71.9 85.6 71.4 69.4 72.7

ore scattered when FCN becomes smaller. From suburban (SU,
< FCN < 6) to urban (U, 2 < FCN < 4) then to the majority of

top-n-go (SnG, 0.5 < FCN), the MEF exhibits a steady increase
n value as FCN decreases. This behavior reflects the increasing
nfluence of the driving conditions (from traffic, grading, etc.)
s posed by the steadily increasing spread of the EF distribution.

hen the driving comes close to frequent SnG (FCN < 0.5), this
nfluence becomes so profound that the MEF begins to rise in
n chaotic manner. It should be cautioned that

The bell-shape spread in the EF distribution was capped at
the low bound limit to zero, therefore the representation may
have discounted the contribution from negative values in EF;
for example, those originated from DPs in down hill driving.
The contribution of auxiliary power unit (APU) energy con-
sumptions from instruments and controls, which is continuous
and does not result in any driving distance, may have created
a biased attribute to the increasing EF value in the low FCN
region. It is because these driving events have shorter distance
and duration, they may disproportionally take up increasing
APU contribution in EF as FCN decreases.

The trend line of MEF observed in Fig. 10 offers some encour-
ging evidence to support the validity of the FL-PR technique
or classification of driving events since the trend of the MEF
urve is comprehensible. Even one could question if the mem-
ig. 10. Effective force (EF) for driving vs. FCN plot, showing how EF varies
ith driving events (resolution: 50 × 50 in full scale).
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The actual EF can also be compared to the MEF for this
particular DrCP, as shown in Fig. 13. For example, we examined
the section from the beginning of the upper trip to 3.5 km. Within
ig. 11. Two trips of the same route show different traffic patterns and the resu

Fig. 11 shows two separate trips of the same route and the
espective driving cycle analysis that reflect different traffic
atterns. The trip of the upper figures spanned for 2139 s and
onsumed 6.93 kWh. The trip below took 1907 s and consumed
.47 kWh. If we can collect a sufficient number of trips of the
ame route, the traffic patterns for this particular route might be
vailable for analysis and comparison to understand causes that
reated such patterns, which might depend on time of the day,
raffic signal location, grading, etc. In this figure, two different
resentations are exhibited. These in column (A) are displayed
y distance to provide spatial correspondence. Those in column
B) are illustrated in time to show temporal correspondence. As
e can easily observe that because the two trips have different
urations, likely due to traffic influence, the plots in column (B)
hat reflect temporal sequence are not helpful in correlating the
wo trips. Those in column (A), in contrast, do show better corre-
pondence. We thus prefer to show the trips in distance, instead
f duration. Using this spatial presentation, the traffic-induced
uration variation was minimized therefore a comprehensive
omparison can be made in accord with spatial correspondence.
omparing the two trip profiles in column (A), we make the

ollowing observations:

Certain points of the route can be marked with distinct speed,
accelerations/decelerations or stops, which imply that distinct
landmarks (traffic lights, intersections, or stop signs) or road
conditions (highways exit to city streets) may exist, which
dominate the make-up of DP and traffic pattern.
For the same section of the route, different traffic patterns may
induce different DP make-up and driving event classification.

With these essential elements in shaping the traffic in mind,
e should point out that a driving event describes a driving

ondition for the DP. A driving event does not have to match

ith road type, thus one could drive on a highway; but, with

ammed bumper-to-bumper traffic, the driving event might be
lassified as stop-n-go, similar to driving on a busy downtown
treet during traffic hours.

F
l

rCP. (A) Plots are illustrated in distance. (B) Plots are illustrated in time.

Another interesting example is presented in Fig. 12, where
ound trips for the same route are presented. In this case, the
eturn trip is presented with a reversed spatial coordinate to
ive proper spatial correspondence. Analogous to Fig. 11, we
ade the same observations. Thus, disparity in traffic pattern

an lead to different DrCP (Fig. 12) and EF values (Fig. 13).
s expected, for some sections of the route, where the traf-
c patterns are substantially different, the corresponding DrCP
nd EF differ accordingly, as shown in Fig. 13, respectively.
or instance, between 3.5 and 8 km in the upper trip (as high-

ighted by the dashed frame), the driving cycle is very different
rom that of the reverse trip in the same section. Therefore, the
ake-up of DPs, the associated DrCP, and EF values show sig-

ificant disparities. A similar scenario is also observed for the
ast section of the upper trip (between 18.5 km and the end of
he trip), in comparison with the same section of the reverse
ig. 12. Driving cycle analysis for a round trip on a commute route. Dashed
ines are shown to relate spatial correspondence at certain points in the route.
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Fig. 13. Vehicle performance analysis of the effective forces (EF) for driving in
the round trip showing the actual EF vs. the MEF representing each specific driv-
ing cycle. The two dashed frames refer to the two particular sections mentioned
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of two conjugate variables: the peak power of each DuP and the
number of DuP’s per minute to characterize DuCP. These two

F
p

n Section 3.2.

his section, both trips exhibit similar DrCP; therefore, we shall
xpect similar EF in both trips. The actual EFs are not only
ifferent, but also different from the MEF associated with this
rofile. Since in this section both trips have a similar DrCP, we
ould not expect any disparity due to traffic. The difference
bserved might come from grading and/or aerodynamic factors,
hich require further inspection of other relevant information of

his particular route. This type of VPA is valuable as evident from

ur unique driving cycle analysis using the FL-PR technique to
ake-up DrCP and EF.

v
t

ig. 14. (A) A driving cycle and the associated battery capacity, state-of-charge and
ack current, voltage, and power excursion profiles.
wer Sources 174 (2007) 76–88 83

.3. Duty cycle analysis

The aforementioned driving cycle analysis provided us a use-
ul and comprehensive approach to analyze vehicle usage and
erformance. It is conceivable to use a similar approach to ana-
yze battery usage and performance in real-life operation. Before
e describe the methodology of how to analyze duty cycles, it is
seful to discuss some semantics regarding duty cycles. Fig. 14
s a representation of a driving cycle and the associated duty
ycle in the powertrain operation. In the figure, the motor speed
n RPM is shown for this particular driving cycle to illustrate
he transient nature and dynamics involved in the powertrain
ystem. Also illustrated is battery pack information, includ-
ng excursions of capacity, state-of-charge (SOC), and energy
rofiles side-by-side with corresponding battery pack current,
oltage, and power excursion profiles. This representation shows
he aggregate behavior of the vehicle and powertrain system in
olumn (A) and in column (B) the transient, dynamic behavior of
he powertrain components (motor/controller and battery pack).
n a broad sense, we can collectively call the graphs in column
A) driving cycles and column (B) duty cycles for vehicle and
owertrain components, respectively.

In the duty cycle analysis for EHV applications, we consider
he power excursion profile the most essential to analyze. With a

ore dynamic nature of the profile, we need to approach the anal-
sis with a different perspective. Similar to the driving cycles,
e use a “duty pulse” (DuP) concept as the building block to

stablish a “duty cycle profile” (DuCP) classification scheme for
uty cycle analysis. To analyze duty cycles, we selected a matrix
ariables are selected due to the consideration of their impor-
ance to battery performance and life. In our consideration, the

energy consumption profiles, (B) the corresponding duty cycle, RPM, battery
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Fig. 19, on the other hand, exhibits the distribution of
EF as a function of driving distance. This plot is related to
Fig. 10, where EF distribution is plotted against driving events
ig. 15. A duty event classification scheme constructed from a fuzzy logic
nference system.

ntensity of the peak power and the frequency of DuP occurrence
re two primary stress factors affecting battery performance and
ife. There are other relevant variables; for instance, the average
ower and energy consumption associated with each DuP that
an also be used in duty cycle analysis. It is important to point
ut the unique relationship between the two “conjugate” vari-
bles as we select them. For example, whereas the average speed
nd distance is a conjugate pair for driving cycle analysis, the
istance is an accumulation of speed over the DP duration. Anal-
gously, whereas the average power and energy consumption is
conjugate pair for duty cycle analysis, the energy consumption

s a summation of power over the DuP duration. It is conceiv-
ble that the average power and energy consumption can also
e used as stress factors for assessing battery performance and
ife. All these conjugate variables can be used in the fuzzy sets
ia membership associations to classify DuP for DuCP in duty
ycle analysis. Using a very similar FL-PR scheme as described
n Fig. 4, we developed and constructed an inference system for
uP classification.
The resulting classification for DuP with five levels of

escription based on peak power and DuP occurrence frequency
s shown in Fig. 15. These five DuP descriptions: intensive,
igh, normal, mild, and benign, are intended for use in defining
tress factors for assessing their impacts on battery performance
nd life. Using this classification scheme, we show an example
f duty cycle in a power versus time curve and the resulting
uCP interpretation in Fig. 16. This is the same example that
e illustrated for the driving cycle in Figs. 6 and 14.
In light of the driving cycle analysis shown in Fig. 9, an

ccompanying duty cycle analysis could be quite insightful. It
s also useful to make a connection between the two analyses.
he following example is an interesting connection between the

wo. Through the analysis of peak power and DuP occurrence
requency for all DuP, the distribution of DuP with peak power
evel is summarized in Fig. 17. The figure shows that at low peak

ower (4–20 kW) HAFB driving exhibits a much higher occur-
ence percentage in the distribution of DuP in the duty cycle.
he HAFB distribution curve also peaks at a lower peak power

evel (about 9 kW) than the others that peak around 20 kW. It is F
ig. 16. Power vs. time and duty cycle profile (DuCP) using the FL-PR technique
escribed in Fig. 15.

onceivable that this phenomenon is a reflection of the driving
vents in conjunction with the speed limit constraints observed
t HAFB, as revealed in the driving events distributions shown
n Fig. 9 and Table 1. This is a noteworthy case for HAFB, where
peed limits on the base resulted in noticeable impacts on the
riving events and DuCP.

Another example of making connections between the two
ets of analyses is explained next for dependence of energy
onsumption on driving condition, it is important to recognize
he inertial nature of the driving cycle versus the spontaneous
nd dynamic nature of the duty cycle. It is worth noting that
uty cycle may include regenerative braking, which is not a
haracteristic in driving cycle, but can critically affect battery
erformance. There are other subtle disparities between duty and
riving cycles, which also need attentions in the analysis, a decel-
ration of the vehicle may corresponds to a period where little
ower was drawn. This may reflect a situation where the vehicle
as slowing down from a relatively high speed, while the energy

onsumption was nil. If regenerative braking kicked in, the pow-
rtrain might actually experience energy gain. Despite these
etails, a well-behaved correspondence between energy con-
umption and driving distance can be yielded from the duty cycle
nalysis. Fig. 18 illustrates this relationship. A linear correspon-
ence between the energy consumption and driving distance is
bserved, as expected, when all the DPs in the database are
ompiled to construct this plot. The density plot also reveals
he spread of the DP distribution, due to fluctuations in driving
ig. 17. DuP distribution in terms of peak power level in duty cycle analysis.
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ig. 18. Energy consumption vs. driving distance plot. The population of DP
n this plot is shown by the density scale on the right (resolution: 50 × 50 in full
cale).

FCN). In Fig. 19, the MEF remains relatively constant (about
.21 kWh km−1) through the entire range, although the scat-
ering of the EF increases more dramatically as the distance
ecreases. The same attributes as discussed in Fig. 10 should
ave contributed to this phenomenon.

Fig. 20 shows a different kind of information as we plot the
nergy consumption against driving events (FCN). In this plot,
s the driving event changes from local (SnG/U/SU) to highway
H) driving, we would anticipate the energy consumption to
ncrease as well. However, the increase is not monotonic. In
he local driving, most of the driving events do not engage in
ong distance driving. Therefore, it is conceivable that the energy
onsumption will increase with FCN with an accelerated pace. In
ural and highway (R/H) driving, the driving distance becomes a
ritical factor to the amount of energy used. In this case, we shall
xpect that the energy consumption increases more drastically
ith distance, a deciding factor in driving event classification

or R/H.

Fig. 21 shows the peak power and driving event correspon-

ence. The mean value of the peak power is shown as the solid
ine. The spread of the power pulses is significant, largely due
o driving condition. The correspondence is quite monotonic,

ig. 19. Distribution of EF as a function of driving distance. The MEF is shown
y the white solid line (resolution: 50 × 50 in full scale).

u
c
t
u

F
5

ig. 20. Energy consumption as a function of driving event distribution (reso-
ution: 50 × 50 in full scale).

s the driving events changes from local to highway driving
he peak power also increases, mainly because the demands for
cceleration to higher speed occur more frequently.

.4. Understanding battery performance through vehicle
sage profile

The ultimate goal for both driving and duty cycle analyses
s to identify key parameters and develop a methodology for
robing, assessing, and predicting battery performance and life
n real-life situations depending on road condition and driving
abit. With our understanding of the bifurcate (inertial versus
pontaneous) nature of having driving and duty cycles in our
nalysis scheme, it seems prudent to take the advantage of this
ual characters in the development of the assessment methodol-
gy. By considering both short-term fluctuations (in duty cycles)
nd resulting inertial changes (in the driving cycles) a vehicle

sage profile (VUP) can be constructed. A step further, we can
onstruct a complex inference system to characterize and predict
he short- and long-term effects of battery performance and life
nder various operating conditions. An important step in design-

ig. 21. Distribution of peak power vs. driving events (FCN) (resolution:
0 × 50 in full scale).
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ng and developing such an assessment scheme is to identify and
efine battery stress factors that can allow us properly probe bat-
ery behavior and its responses to the usage profile. We can then
efine this assessment scheme as vehicle usage patterns, so we
an directly relate battery performance and life to the operation
f the vehicle.

How to define a set of stress factors in assessing battery per-
ormance and life is still out in debate. Some earlier work can
e found in the literature [37–42]. A recent work by Wenzl et al.
42] attempted to address this issue for storage applications. In
ur approach, we attempt to take the merits of integrating driving
ycle and duty cycle analyses into a consistent classification of
attery stress factors and VUP. Through the characterization of
rCP and DuCP, we make a connection between driving-duty

ycles and battery stress factors, which will allow us to perform
attery modeling and simulation for prediction of performance
nd life under various operating conditions in real life.

More importantly, we can use both laboratory and field test
ata to validate predictions from the model simulation, therefore
e can bridge the gap of understanding between laboratory and

eal-life situations. It should be noted that field-testing provides
much broader range and more complex condition and allows us

o assess battery performance in a more complicated setting than
he laboratory tests. The ultimate goal will be to validate seam-
essly real life and laboratory conditions in the simulation, so
erformance and life prediction will be consistent disregarding
he operating setting is real life or not.

The above postulation prompts us to analyze the relationship
etween DuCP and DrCP more in depth. A simplified scheme
an be constructed, for instance, from both of them, to define
battery stress factor and VUP. Fig. 22 exhibits such a clas-

ification scheme. This simple scheme can be used to classify
ombined battery/vehicle usage profiles, based on a similar FL-
R set to construct Fig. 22. Fig. 23 demonstrates how a driving
ycle can be transformed into a VUP, from low to aggressive.
hese five classifications are designed to express their poten-

ial impacts on battery behavior. At the present stage, we are
till in the process of characterizing how these impacts can be
orrelated with battery performance degradation.

Fig. 24 presents an overview of the processes involved to

ssess the VUP. The first process involves the determination of
he DrCP for the driving cycle using our unique FL-PR technique
o classify driving events, as driving condition changes. Analo-
ously, a similar FL-PR technique was used to characterize the

n
c
m
W

Fig. 23. Classification of vehicle usa
ig. 22. A battery stress factor and vehicle usage classification scheme based
n driving and duty cycle profiles.

uty cycle into DuCP to assess the power usage in the driving
hrough a succession of duty events. Finally, both driving and
uty events have to be combined to express the VUP. We envi-
ion combining these three profiles to give the characteristics of
he driving pattern of this specific trip.

. Future directions

We have illustrated an interesting approach to demonstrate
hat through simple FL-PR techniques, we created a unique
pportunity to analyze driving patterns, including driving and
uty cycles and vehicle usage, from data collected from real-life
HV operation. By carefully characterizing driving and duty
vents, we can compose useful profiles to describe driving and
uty cycles via the FL-PR classification schemes. We have used
arious presentations to show that these analyses indeed provide
omprehensive information on the vehicle and battery perfor-
ance. On the other hand, a series of more careful validation

eeds to be engaged to reach a consistent interpretation of the
esults. We continue to progress in this direction to complete
he entire analysis with a well-behaved representation within a
onsistent framework.

We continue to find new relationships to explore and to use the

ew results to validate what has been discovered so far. The duty
ycle analyses and the correlation to quantifiable battery perfor-
ance degradation are the major focus of our current efforts.
e are in the process of understanding and quantifying critical

ge profile for a driving cycle.
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Fig. 24. Illustration of DrCP, DuC

arameters that can be used to define battery stress factors. We
re also in the process of establishing quantifiable and reliable
echniques to characterize battery performance and degradation,
o the matrix of degradation can be correlated with the stress
actors. A good example is our recent work using incremental
apacity analysis [43–45] to identify and quantify capacity loss
or commercial cells in the laboratory tests. We are assessing
he validity of using this approach for battery evaluations in the
eld, with anticipation that real-life data can be collected and
sed for validation.

Another aspect that we did not elaborate is computer
odeling and simulation that can be used to predict battery

erformance and life. Much progress has been made in this
spect that numerical models for batteries can now be easily
ntegrated with test protocols and laboratory evaluations to yield
igh fidelity predictions. The models not only can be used to
redict battery behavior but also can be deployed to facilitate
owertrain control and battery pack management. Most of our
ecent work [46–49] is primarily focusing on developing such
n integrated approach to enable early prediction of battery life
or traction and storage applications.

. Conclusion

To conduct driving or duty cycle analysis using real-life vehi-
le test data is difficult and challenging. Successful driving cycle
nalysis, on the other hand, can greatly benefit technology devel-
pment, as we explained above. We showed that comprehensive
riving cycle analysis could be achieved with unique fuzzy logic
attern recognition (FL-PR) technique. The contribution from

his FL-PR technique is the ability to construct a driving cycle
rofile (DrCP) based on percentage time and/or distance trav-
led. The DrCP can then be used to compare trip characteristics
ide-by-side among trips, correlate vehicle’s driving and usage

a
s
t
a

d resulting vehicle usage profile.

atterns with performance characteristics, such as effective force
or vehicle propulsion (or battery life, which is feasible but not
resented herein). This FL-PR approach could be extended to
ystematically analyze impacts from traffic or road condition,
nd derive useful vehicle usage information to assist fleet man-
gement or battery performance and life prediction. We also
howed that we could use this FL-PR technique to analyze duty
ycles and identify useful stress factors to define vehicle usage
rofile that can be used to correlate battery degradation in the
uture. Our ultimate goal is to use real-life data and laboratory
esting to establish a realistic model for battery performance and
ife prediction.
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